Category Archives: News

Select a news topic from the list below, then select a news article to read.

Apply now for the 2022 Summer Graduate Research and Mentoring Program!

Apply now for the 2022 Summer Graduate Research and Mentoring Program at https://www.teuscher-lab.com/alife14_biomolecules_workshop/grmp

New Paper: Proximal Policy Optimization for Radiation Source Search

Proctor, P.; Teuscher, C.; Hecht, A.; Osiński, M. Proximal Policy Optimization for Radiation Source Search. Journal of Nuclear Engineering, 2:368-397, 2021. https://doi.org/10.3390/jne2040029

Rapid search and localization for nuclear sources can be an important aspect in preventing human harm from illicit material in dirty bombs or from contamination. In the case of a single mobile radiation detector, there are numerous challenges to overcome such as weak source intensity, multiple sources, background radiation, and the presence of obstructions, i.e., a non-convex environment. In this work, we investigate the sequential decision making capability of deep reinforcement learning in the nuclear source search context. A novel neural network architecture (RAD-A2C) based on the advantage actor critic (A2C) framework and a particle filter gated recurrent unit for localization is proposed. Performance is studied in a randomized 20×20 m convex and non-convex simulation environment across a range of signal-to-noise ratio (SNR)s for a single detector and single source. RAD-A2C performance is compared to both an information-driven controller that uses a bootstrap particle filter and to a gradient search (GS) algorithm. We find that the RAD-A2C has comparable performance to the information-driven controller across SNR in a convex environment. The RAD-A2C far outperforms the GS algorithm in the non-convex environment with greater than 95% median completion rate for up to seven obstructions.

IEEE Transactions on Parallel and Distributed Special Section on Non-Von Neumann Technologies Published

S. Pakin, K. Schuman, C. Teuscher. Special Section on Parallel and Distributed Computing Techniques for Non-Von Neumann Technologies, IEEE Transactions on Parallel and Distributed Systems (TPDS), 32(2), 2022, https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=9493664

NEW PAPER: Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks

Lilak S, Woods W, Scharnhorst K, Dunham C, Teuscher C, Stieg AZ and Gimzewski JK (2021) Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks. Frontiers in Nanotechnology, 3:675792. doi: 10.3389/fnano.2021.675792

Abstract: Atomic Switch Networks comprising silver iodide (AgI) junctions, a material previously unexplored as functional memristive elements within highly interconnected nanowire networks, were employed as a neuromorphic substrate for physical Reservoir Computing. This new class of ASN-based devices has been physically characterized and utilized to classify spoken digit audio data, demonstrating the utility of substrate-based device architectures where intrinsic material properties can be exploited to perform computation in-materio. This work demonstrates high accuracy in the classification of temporally analyzed Free-Spoken Digit Data These results expand upon the class of viable memristive materials available for the production of functional nanowire networks and bolster the utility of ASN-based devices as unique hardware platforms for neuromorphic computing applications involving memory, adaptation and learning.